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1. Abstract  
The Coos estuary in Southern Oregon supports a variety of habitats, including eelgrass (Zostera marina) 
meadows. Eelgrass meadows provide shelter and sustenance to local and migratory wildlife, including 
commercially important fishes, and cultural resources to local communities. These ecosystem services 
establish eelgrass as an ecologically, economically, and culturally important resource. However, the extent and 
density of eelgrass meadows within this estuary have declined substantially since 2005, threatening the 
ecosystem services they provide. NASA DEVELOP partnered with the South Slough National Estuarine 
Research Reserve and the Confederated Tribes of the Coos, Lower Umpqua, and Siuslaw Indians’ 
Department of Natural Resources to generate time-series maps of the water quality conditions (chlorophyll-a, 
turbidity) and eelgrass extent in the Coos estuary from 2016 to 2023 to better understand the conditions 
driving eelgrass decline. The DEVELOP team used NASA Earth observations including Landsat 8 
Operational Land Imager (OLI), Landsat 9 OLI-2, and the European Space Agency’s Sentinel-2 Multispectral 
Instrument (MSI) to generate these time-series maps. The team faced limitations in the feasibility of detecting 
eelgrass within the Coos Estuary, including spectral resolution, tidal phase, and turbidity. These limitations 
indicate additional in situ data collection will be necessary for accurate eelgrass assessment. Meanwhile, the 
team determined it is feasible to assess turbidity and chlorophyll-a within the Coos Estuary using remote 
satellite data. These tools enabled the research partners to assess water quality characteristics within the Coos 
Estuary at a greater spatial scale and may provide a method of inexpensive preliminary investigation of 
eelgrass meadow locations. 

Key Terms 
eelgrass, remote sensing, Sentinel, Landsat, warming, submerged aquatic vegetation, water resources, water 
quality 
 

2. Introduction 
2.1 Background Information 
Eelgrass (Zostera marina) is a common seagrass species that forms meadows in coastal and estuarine habitats 
throughout the temperate northern hemisphere (Short et al., 2007). Eelgrass meadows provide a myriad of 
critical ecosystem services. Across their distribution, eelgrass meadows support local economies by providing 
nursery habitat for fishery species, serving as a vital food source for migratory wildlife, and increasing 
recreational opportunities for local communities (Nordlund et al., 2016). However, eelgrasses have 
experienced substantial declines globally (Orth et al., 2006). These declines threaten the ecosystem services 
which eelgrass meadows provide and foreshadow economic and cultural costs to local communities (Orth et 
al., 2006). 
 
Globally, eelgrass meadow declines have been attributed to habitat destruction and water quality degradation 
driven by anthropogenic activities (Orth et al., 2006). Eelgrass is sensitive to changes in various water quality 
conditions, including temperature, nutrient availability, and turbidity (Lee et al., 2007; Nejrup & Pederson, 
2008; Touchette & Burkholder, 2000). These conditions impose direct and indirect effects on the resource 
acquisition and physiology of eelgrass (Lee et al., 2007; Nejrup & Pederson, 2008; Touchette & Burkholder, 
2000). As a result, when these conditions exceed optimal bounds, eelgrass meadow health declines (Lee et al., 
2007; Nejrup & Pederson, 2008; Touchette & Burkholder, 2000). Given the importance of eelgrass and their 
rapid decline, efforts to monitor the extent of eelgrass and the water quality conditions impacting them have 
increased in recent decades (Dunic et al., 2021). 
 
The study area for this feasibility project is limited to the Coos estuary, in Southern Oregon, with a particular 
interest in the South Slough region. The Coos estuary stretches across 54 km2 and supports a variety of 
habitats including eelgrass meadows (Figure 1; Jarrin et. al., 2022; Rumrill, 2007). These meadows most 
commonly occur as narrow fringe beds along the edges of deep tidal channels (Rumrill & Sowers, 2008). 
Coos estuary water quality conditions, such as sea surface temperature (SST), salinity, nutrient availability, and 
dissolved oxygen, are heavily influenced by annual and interannual coastal cycles, such as the California 
Current System (CCS), the El Niño Southern Oscillation (ENSO), and seasonal storm run-off (Jarrin et al., 
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2022). Since 2005, eelgrass meadow extent and density have declined dramatically throughout the estuary. 
Following the 2013 to 2016 warm water event, during which SST were often 1.5°C greater than average, 
eelgrass shoot density declined from a long-term average of 33 shoot per m2 to only 5 shoots per m2 (Jarrin 
et. al., 2022). 

 

 
Figure 1. Coos estuary with suitable eelgrass habitat highlighted in blue. 

 
The DEVELOP team considered NASA Earth observations including Landsat 8 Operational Land Imager 
(OLI), Landsat 9 OLI-2, and the European Space Agency’s Sentinel-2 Multispectral Instrument (MSI) to 
generate time-series maps of eelgrass extent, chlorophyll-a, and turbidity throughout the Coos estuary from 
2010 to 2023. This methodology has previously been used by the NASA DEVELOP Louisiana Water 
Resources team in the summer of 2021 to successfully assess the change in seagrass meadow extent in Breton 
National Wildlife Refuge (Moeen et al., 2021). These maps revealed trends in eelgrass decline and recovery 
and lent insight into which water quality conditions drove these changes. 
 
2.2 Project Partners & Objectives 
The NASA DEVELOP team is partnered with the South Slough National Estuarine Research Reserve 
(SSNERR) and the Confederated Tribes of the Coos, Lower Umpqua, and Siuslaw Indians’ (CTCLUSI) 
Department of Natural Resources. SSNERR is responsible for managing and monitoring the Coos estuary 
with the goal of conserving its natural resources for research and educational opportunities. CTCLUSI is 
responsible for conserving and managing natural resources on tribally held land. These organizations 
prioritize habitat restoration and understanding how climate change and water quality influence estuary 
habitat health. 
 
SSNERR and CTCLUSI have used monitoring stations, field surveys, and infrequent unmanned aerial vehicle 
(UAV) remote sensing to monitor water quality and eelgrass extent (Anderson, 2020; Jarrin et al., 2022). 
These efforts have revealed substantial declines in eelgrass extent since 2005 (Jarrin et al., 2022). However, 
the data gained from these methods are spatially and temporally limited. The NASA DEVELOP team’s 
objectives were to develop methods to monitor eelgrass extent and water quality throughout the Coos estuary 
using remote sensing data. Through this project, SSNERR and CTCLUSI aimed to develop remote sensing 
and spatial mapping methods to enhance their data collection and better understand the drivers of eelgrass 
decline. Using these results, SSNERR and CTCLUSI will be able to develop management decisions related to 
the identified drivers of eelgrass decline and maintain monitoring of these habitats through remote sensing. 
 

3. Methodology 
3.1 Data Acquisition  
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The team accessed Earth observation data from Google Earth Engine that spanned from 2016 to 2023 
(Table 1). The team acquired surface reflectance products from Landsat 8 Operational Land Imager (OLI) 
and Landsat 9 OLI-2 through Google Earth Engine (GEE). The team used these products, which all have a 
resolution of 30 meters, to produce preliminary visualizations of submerged aquatic vegetation (SAV), 
turbidity, and chlorophyll-a. The team also acquired top-of-atmosphere (TOA) products from Sentinel-2 
MultiSpectral Instrument (MSI) through Google Earth Engine (GEE). The team used this product to classify 
eelgrass and assess the extent of SAV, turbidity, and chlorophyll-a concentration within the estuary. 
 
Table 1 
Earth observation datasets utilized in this study 

Sensor Processing Level Original Data 
Source 

Spatial Resolution GEE Image 
Collection ID 

Landsat 8 OLI Surface Reflectance 
Collection 1, Tier 1 

USGS Earth 
Explorer 

30m LANDSAT/LC08
/C01/T1_SR 

Landsat 9 OLI-2 Level 2 Surface 
Reflectance 
Collection 2, Tier 1 

USGS Earth 
Explorer 

30m LANDSAT/LC09
/C02/T2_L2 

Sentinel-2 MSI Level 2-A Top-Of-
Atmosphere 

European Space 
Agency (ESA) 
Open Access Hub 

10m (Red, Green, 
Blue, Near-infrared) 
20m (Red-edge 1-4) 
60m (Aerosols) 

COPERNICUS/S
2 
 

 
In addition to Earth observation data, the team used existing ancillary data (Table 2) provided by SSNERR 
and CTCLUSI. SSNERR and CTCLUSI operate water quality and weather monitoring stations which 
provide water and air temperature, turbidity, salinity, pH, and dissolved oxygen measurements in 15-minute 
intervals (National Estuarine Research Reserve System, 2023). The team used these data to validate remote 
sensing measurements of chlorophyll-a and turbidity and to track temperature and salinity alongside remotely 
sensed measurements. SSNERR also provided shapefiles of eelgrass extent in 2016 from the Pacific Marine 
and Estuarine Fish Habitat Partnership (PMEP; Pacific States Marine Fisheries Commission (PSMFC); GIS, 
2018). The team used these data to produce training data for supervised classification and perform accuracy 
assessments of the resulting classified maps. 
 
Table 2 
Ancillary datasets used in this study 

Dataset Source Data Parameters 

SSNERR Water Quality and Weather Monitoring 
Stations 

Water/air temperature, turbidity, salinity, pH, 
dissolved oxygen provided in 15-minute intervals 

Pacific Marine and Estuarine Fish Habitat 
Partnership (PMEP) 

Maximum observed extent of eelgrass map layers 
from 2016 

 
3.2 Data Processing 
The team processed Level 1 Top-of-Atmosphere (TOA) data from Sentinel-2 MSI to adjust for atmospheric 
interference using the Modified Atmospheric Correction for INland waters (MAIN) atmospheric correction 
program. MAIN is a tool that is specialized for coastal and inland water applications. The team applied this 
correction to Sentinel imagery using the ORCAA tool in Google Earth Engine. In addition to correcting for 
atmospheric interference, the team filtered available corrected imagery to select images taken during high tide 
and with a maximum of 10% cloud cover. This excluded images where clouds obstructed observations and 
where intertidal meadows were emerged. 
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The team used multiple indices to assess water quality and eelgrass extent in the Coos Estuary. The team used 
the Normalized Difference Turbidity Index (NDTI) to assess the intensity of turbidity throughout the estuary 
(Table 3; Lacaux et al., 2007). The team determined the concentration of algae using the Normalized 
Difference Chlorophyll-a Index (NDCI; Table 3; Mishra and Mishra, 2012; Vermote et al., 2016). Finally, the 
team used the Normalized Difference Aquatic Vegetation Index (NDAVI), which was adapted from the 
Normalized Difference Vegetation Index (NDVI), to visualize the extent of submerged aquatic vegetation 
(Table 3; Villa et al., 2014). These indices use the normalized difference of the red, red edge, green, blue, 
and/or near-infrared (NIR) spectral bands’ surface reflectance to highlight specific features such as the 
unique reflectance of photosynthetic organisms. The team calculated each of these indices and produced 
visualizations using ArcGIS Pro 3.1.0. 
 
Table 3 
Remote sensing indices used in this study 

Index Equation Source 

Normalized 
Difference Turbidity 

Index (NDTI) 
1.  𝑁𝐷𝑇𝐼  =

(𝑅𝑒𝑑  −  𝐺𝑟𝑒𝑒𝑛)

(𝑅𝑒𝑑  +  𝐺𝑟𝑒𝑒𝑛)
 

Lacaux et al., 2007 

Normalized 
Difference 

Chlorophyll-a Index 
(NDCI) 2.  𝑁𝐷𝐶𝐼  =  

(𝑅𝑒𝑑 𝐸𝑑𝑔𝑒  −  𝑅𝑒𝑑)

(𝑅𝑒𝑑 𝐸𝑑𝑔𝑒  +  𝑅𝑒𝑑)
 

Mishra and Mishra, 2012 

Normalized 
Difference Aquatic 
Vegetation Index 

(NDAVI) 

3.  𝑁𝐷𝐴𝑉𝐼  =  
(𝑁𝐼𝑅  −  𝐵𝑙𝑢𝑒)

(𝑁𝐼𝑅  +  𝐵𝑙𝑢𝑒)
 

Villa et al., 2014 

 
 
3.3 Data Analysis 
The team assessed the extent of eelgrass through supervised classification using machine learning algorithms 
in ArcGIS Pro. The team used the Training Samples Manager tool in ArcGIS Pro to generate training 
samples of pixels assigned to the class of either ‘water’ or ‘eelgrass’, which the team determined using the 
2016 PMEP eelgrass extent map. The team used these samples and the Sentinel-2 image of the estuary from 
2016 to train three supervised classification algorithms in ArcGIS Pro: Support Vector Machine (SVM), 
Random Trees (RT), and Maximum Likelihood (ML). The team determined that the SVM method had the 
greatest accuracy by calculating a confusion matrix with 2000 stratified random accuracy assessment points. 
The team used the SVM Esri Classifier Definition to classify the pixels of each Sentinel-2 image of the Coos 
Estuary for each year from 2016 to 2023. 
 

4. Results & Discussion 
4.1 Analysis of Results 
The team assessed the change of eelgrass extent and water quality from 2016 to 2023 in the Coos Estuary 
using the ORCAA tool in Google Earth Engine and ArcGIS Pro. Our analysis used two approaches, 
Normalized Difference Aquatic Vegetation Index and Supervised classification to visualize eelgrass extent 
within the estuary. Using time series maps, the team was able to identify patterns in eelgrass decline and 
highlight areas of concern. The analysis of water quality focused on the trends of turbidity and chlorophyll-a 
through time. These analyses demonstrated the feasibility of using ORCAA to obtain useful index values and 
allowed us to examine the water quality of the Coos Estuary across seasons and years. 
 
4.1.1 Eelgrass extent 
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Supervised classification of eelgrass in the Coos Estuary in the summer of 2016 achieved a fair accuracy 
(Appendix 1; Kappa = 0.24; Accuracy = 87.95%). Eelgrass extent maps were only available for 2016, limiting 
accuracy assessments to that year. The team classified imagery for each subsequent year to 2023 to produce a 
time-series map that illustrates eelgrass extent change (Figure 2). This time-series map illustrates a marked 
decline in eelgrass extent throughout this timespan. However, there is also an inconsistency in the displayed 
rate of decline across years. This inconsistency may be reflecting variation in factors that influence the 
visibility of eelgrass, such as turbidity and tidal height, and indicates that there is a limited ability to ascertain 
eelgrass declines. 
 

 
Figure 2. Time-series of eelgrass presence as determined by Support Vector Machine supervised classification 

in the summer of each study year. 
 
In addition to classified imagery, the team also visualized the extent of submerged aquatic vegetation (SAV) 
using NDAVI (Figure 3). These visualizations do not distinguish eelgrass, but they do allow end users to 
identify possible locations of eelgrass meadows for in-the-field verification. The time series of NDAVI from 
2016 to 2023 does not reflect the decline in eelgrass observed in the classified imagery. This may be due to 
inaccuracies in classification possibly caused by other benthic components, influence of water column 
dissolved and particulate matter, or a combination of these factors. 
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Figure 3. Time-series map of Normalized Difference Aquatic Vegetation Index throughout Coos Estuary in 

the summer of each study year. 
 
4.1.2 Chlorophyll-a 
The time-series map of NDCI the team produced visualizes the spatial distribution of chlorophyll-a 
throughout the Coos Estuary during the summer season of each study year (Figure 4). Chlorophyll-a is 
contained within photosynthetic organisms and is especially useful for detecting the distribution and 
abundance of phytoplankton in the water column (Millette et al., 2019). Phytoplankton rapidly proliferates 
under ideal water column conditions and their prevalence can be used to indicate changes in these conditions 
(Racault et al., 2014). High NDCI values within the Coos Estuary may indicate regions impacted by nutrient 
enrichment and/or warm water. In addition to their role as indicators of water quality, the abundance of 
phytoplankton can have consequences for eelgrass meadow health. As phytoplankton proliferate, they 
increase the turbidity of the water column and limit the light available to eelgrass, impacting their health 
(Touchette and Burkholder, 2000). Remote sensing allows researchers to track the distribution of chlorophyll-
a within the Coos Estuary and consequently track water quality anomalies and regions of concern for eelgrass 
health. 
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Figure 4. Time-series map of Normalized Difference Chlorophyll-a Index throughout the Coos Estuary in the 

summer of each study year. 
 

To better examine chlorophyll-a concentrations throughout the estuary, the team retrieved daily and monthly 
NDCI values from ORCAA and plotted the data across our study period (Figure 5). The plot reveals daily 
and seasonal fluctuations in chlorophyll-a. There appears to be higher instances of chlorophyll-a in the middle 
of each year, which may be in response to summer upwelling. The increase of NDCI values during the 
summer months also provides insight into when SAVs may be obscured by other photosynthetically active 
organisms and presents opportunities to identify chlorophyll-a anomalies.  
 
 

Figure 5. Daily and monthly Normalized Difference Chlorophyll Index (NDCI) obtained from ORCAA. 
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4.1.3 Turbidity 
The time-series map of NDTI the team produced visualizes the spatial distribution of turbidity throughout 
the Coos Estuary (Figure 6). Turbidity is a measurement of water clarity that is influenced by suspended 
matter, including sediments and organic debris (World Health Organization, 2017). Turbidity limits the 
penetration of photosynthetically active radiation into the water column, reducing the irradiance available to 
eelgrass meadows. This can impact the productivity of eelgrass and, in extreme cases, lead to die-offs when 
eelgrasses consume more energy than they produce (Lee et al., 2007). Understanding the distribution of 
turbidity is important to identify locations where shading may impact eelgrass health and infer the source of 
suspended matter. In addition to the spatial variation of turbidity, the team also visualized the variation of the 
average turbidity of the Coos Estuary across time in 2016, 2020, and 2023 (Figure 7). This figure 
demonstrates the variability of turbidity through time and compares remotely sensed turbidity patterns to the 
measurements of turbidity collected in situ by SSNERR monitoring stations.  
 

 
Figure 6. Time-series map of Normalized Difference Turbidity Index throughout the Coos Estuary in the 

summer of each study year. 
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Figure 7. Normalized Difference Turbidity Index (NDTI) obtained from ORCAA vs in situ data.  
 
4.2 Feasibility Assessment 
The constraints of this project, which include coarse spatial resolution satellite data, turbid & cloudy study 
area conditions, and the prevalence of non-eelgrass photosynthetic organisms, negatively affected the 
applicability and success of the team’s methodology. Ultimately, the partners can use the team’s methods and 
end products to further their understanding of eelgrass extent and decline in the Coos Estuary. However, 
additional data, such as in situ eelgrass density counts, should be incorporated into the methodology to 
improve eelgrass identification and classification.  
 
4.3 Future Work 
Our study investigated the feasibility of mapping eelgrass extents and performing water quality analyses in the 
Coos Estuary. For future work, increasing the quantity and diversity of data points by including other 
estuaries with eelgrass may improve the accuracy of models such as the support vector machine. In addition, 
the use of commercial satellite imagery with higher spatial, spectral, and or temporal resolution may improve 
the identification of eel grass and water parameters using satellite data. Finally, the use of UAS imagery 
assisted by ground-truthing may improve the monitoring of eelgrass and water quality. 
 

5. Conclusions 
This project used satellite remote sensing to assess the turbidity and chlorophyll-a throughout the Coos 
Estuary and determine the feasibility of mapping eelgrass meadows. The team visualized the spatial 
distribution of each water quality parameter, which highlighted regions where turbidity and/or chlorophyll-a 
were especially high. For instance, turbidity was especially high in the South Slough and eastern portion of the 
Coos Estuary, implicating surface water run-off in driving turbidity. Identifying turbidity and chlorophyll-a 
hotspots allow the partners to determine areas where these water quality conditions can impact eelgrass and 
infer the drivers of the conditions. Moreover, the team assessed the variation in the turbidity and chlorophyll-
a indices averaged across the estuary through time to identify seasonal patterns. Though turbidity lacked a 
clear seasonal pattern, chlorophyll-a concentration was generally greater during the summer season, revealing 
a seasonal pattern in this parameter. Understanding temporal patterns in these water quality conditions allows 
the research partners to infer drivers of the conditions and prioritize specific time frames for sample and data 
collection. The team provided the research partners with the tools to generate additional maps and graphs 
which enable them to further identify spatial and temporal patterns of turbidity and chlorophyll-a. In 
addition, the team determined that there is limited feasibility to map eelgrass extent in the Coos Estuary using 
satellite data. The team attempted to assess eelgrass extent using NDAVI and support vector machine 
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supervised classification. Each method faced challenges due to coarse image resolution, water column 
interference, spectral mixing, and the presence of other submerged photosynthetic organisms. These 
challenges limited the utility of NDAVI and restricted the accuracy of supervised classification to a “fair” 
rating. This feasibility assessment grants guidance to the research partners in how to prioritize methodologies 
and how to improve upon these mapping efforts. Though their accuracy is limited, remotely sensed eelgrass 
maps can still be useful for exploratory investigation of potential eelgrass meadows to assess on-the-ground. 
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7. Glossary 
CCS – California Current System 
CTCLUSI – Confederated Tribes of Coos, Lower Umpqua, and Siuslaw Indians 
Chlorophyll-a – The main form of chlorophyll found in plants. It can be used as an indicator of the trophic 
condition of a given waterbody 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time 
Eelgrass – An abundant marine flowering plant that forms meadows in subtidal and intertidal habitats, 
providing habitat and forage to many animals 
ENSO – El Niño Southern Oscillation 
GEE – Google Earth Engine 
MSI – Multispectral Instrument 
NDAVI – Normalized Difference Aquatic Vegetation Index 
NDCI – Normalized Difference Chlorophyll-a Index 
NDTI – Normalized Difference Turbidity Index 
ORCAA – Optical Reef and Coastal Area Assessment Tool 
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OLI – Operational Land Imager 
SAV – Submerged aquatic vegetation 
SSNERR – South Slough National Estuarine Research Reserve 
SST – Sea surface temperature 
Turbidity – Opaque suspended particles that scatter and or absorb light 
UAV – Unmanned Aerial Vehicle 
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