

South Slough Water Resources

Monitoring Changes in Water Quality to Identify Stressors in Eelgrass Extent Throughout the Coos Estuary

Maya Hall • Gabriel Halaweh • Sean McCollum • Zoë Siman-Tov

Background

A History of Decline

Recent Climate Anomalies

- 2013 2016 Marine Heat Wave (MHW)
- El Niño Southern Oscillation (ENSO)
- Record low Arctic sea ice (2018)
- 2021 Heat Wave

Study Area and Period

Study Area

Coos Estuary and South Slough

- 54 km²
- Prior to 2013, eelgrass shoot density average was 33 shoots per m²
- After 2013-2016 warm water event, eelgrass shoot density average was 5 shoots per m²

Study Period

• 2016 - 2023

Project Partners

South Slough National Estuarine Research Reserve (SSNERR)

Habitat Resilience

Climate Change

Community Recreation

Commerical Disruptions

Habitat Resilience

Climate Change

Community Recreation

Commerical Disruptions

Habitat Resilience

Climate Change

Commerical Disruptions

Image Credit: National Oceanic and Atmospheric Administration

Habitat Resilience

Climate Change

Community Recreation

Image Credit: National Oceanic and Atmospheric Administration

Objectives

Use NASA Earth Observations to **analyze** eelgrass presence and **investigate** the drivers of eelgrass decline.

Eelgrass Extent Maps Water Quality Time Series Analyses

Google Earth Engine (GEE) Tutorial

NASA Satellites and Sensors

Methodology: Satellite Comparison

Landsat 8 OLI

Sentinel-2 MSI

Methodology: Eelgrass Extent Maps

Methodology: ORCAA Tool

User Interface

Extracting Data

Methodology: Training

Existing Eelgrass Extent 2016

Support Vector Machine

Methodology: Water Quality Time Series

Sentinel-2 & Landsat Imagery

> Optical Reef and Coastal Area Assessment (ORCAA) Tool

Normalized Difference
Aquatic Vegetation
Index (NDAVI)

Normalized
Difference **Chlorophyll**Index (NDCI)

Normalized
Difference **Turbidity**Index (NDTI)

Raster Calculation and Visualization

Final Maps of SAVs, Chlorophyll-a, and Turbidity

Methodology: Normalized Difference Aquatic Vegetation Index (NDAVI)

&

NIR - Blue = NDAVI

Blue

Identifies Submerged Aquatic Vegetation (SAV)

More Vegetation

Methodology: Chlorophyll-A

Red-Edge

Red

Identifies Chlorophyll-A

Less Chlorophyll-a

More Chlorophyll-a

Methodology: Normalized Difference Turbidity Index (NDTI)

Results: Classification of Eelgrass

2016 Eelgrass Extent

Support Vector Machine

Random Trees

Maximum Likelihood

Results: Eelgrass Classification Accuracy

2016 Eelgrass Extent

Support Vector Machine

Results: Eelgrass Classification Accuracy

2016 Eelgrass Extent

Support Vector Machine

Results: Three-Year Comparison with SVM

Results: Normalized Difference Aquatic Vegetation (NDAVI)

Results: Normalized Difference Chlorophyll Index (NDCI)

Results: Normalized Difference Chlorophyll Index (NDCI)

Results: Normalized Difference Turbidity Index (NDTI)

Results: ORCAA and in situ Turbidity Data

Conclusions

Satellite remote sensing offers the potential to visualize broad water quality trends in the Coos Estuary

Indices such as NDAVI are **useful for exploratory investigations** into potential eelgrass meadows

In situ measurements are highly recommended and can improve eelgrass identification and classification by satellites

Errors and Uncertainties

Coarse Spatial Resolution

Study Site Conditions

Lack of Recent UAS Ancillary Data

Tidal Influences

Future Work

Integrate higher resolution data into our methods

Incorporate
density counts
of eelgrass into
analyses

Classify
eelgrass using
updated
UAS data

Use **additional estuaries** for algorithm training

Acknowledgments

We would like to sincerely thank our...

Science Advisors

• Dr. Juan Torres-Pérez, Dr. Liane Guild, and Britnay Beaudry

<u>Partners</u>

- South Slough National Estuarine Research Reserve (SSNERR) and the Confederated Tribes of the Coos, Lower Umqua, and Siuslaw Indians' (CTCLUSI) Natural Resources Department
- Alicia Helms, Jenni Schmitt, Jennifer Kirkland, and Janet Niessner

Fellow

Lisa Tanh, for guiding and supporting this project

This material contains modified Copernicus Sentinel data (2016 - 2023), processed by ESA.